

Lessons Learned The Hard Way

Bob Lucas
USC Information Sciences Institute
June 26, 2002

This is all Fred's fault!

He made me give this talk ©

What Howard Frank's Wife Said

- You should have three points
- Any less, and you have nothing to say
- Any more, and you have nothing important

What I'm Going To Talk About

- Parallel applications
- Programming models
- The "Vision Thing"

Application War Story #1

- My main thesis project: Parallel PISCES
- Baseline is PISCES 2B
 - 2D transistor device modeling code
 - Bottleneck is sparse matrix solver
 - Platform of choice is the all-powerful VAX 11/780
- Research Question:
 - See if parallel processing addresses this major computational bottleneck in electrical engineering.

Trivial PISCES Example

Simulation grid for 15 by 15 diode

PISCES Input Deck


```
title square pn diode
mesh rect nx=15 ny=15
x.mesh location=0.0 node=1 ratio=1
x.mesh location=1.0 node=15 ratio=1
y.mesh location=0.0 node=1 ratio=1
y.mesh location=0.3 node=8 ratio=0.8
y.mesh location=1.0 node=15 ratio=1.2
region num=1 silicon ix.lo=1 ix.hi=15 iy.lo=1 iy.hi=15
elec num=1 ix.lo=1 ix.hi=15 iy.lo=1 iy.hi=1
elec num=2 ix.lo=1 ix.hi=15 iy.lo=15 iy.hi=15
doping reg=1 n.type conc=1e15 uniform
doping reg=1 p.type conc=1e19 gauss
+ x.1=0 x.r=1 y.top=0 y.bot=0 junc=0.3
symb newton cube carr=2
method rhsnorm xnorm autonr
models temp=300 srh auger conmob fldmob
solve init vstep=0.1 nsteps=3 elect=1
end
```

PISCES command file for 15 X 15 diode

Parallel PISCES Run Time

Parallel PISCES Run Time

Parallel PISCES Speedup

Parallel PISCES Speedup

Distribution of Run Time

Parallel PISCES Run Time as an Accumulation of Parts for 21 X 21 Diode

What happened?

- Boundary conditions changed
- PISCES:
 - I spent eighteen months porting PISCES
 - Meanwhile, Pinto and Rafferty kept working
 - Parallel PISCES was obsolete before it was finished
- Computers:
 - Good: iPSC out-performed Sun and VAX
 - Bad: iPSC roughly matched the Convex C-1
- You get what you pay for!
- Bottom Line:
 - Parallel PISCES was only used to generate curves for my thesis.

Application War Story #2

- DARPA project: SFExpress
- Baseline is modSAF
 - Human-in-the-loop simulator for training
 - Bottleneck is communicating state amongst entities
 - Goal is to run 50,000 entities (I.e., tanks)
 - State-of-the-art was ~2000

Full Pathfinder SPP Architecture

- Replicated Basic Units To Support Total Entity Count
- Independent Communications Within Up-Down Layers
 - Parallel Operations With SAFSim Services
- Improve Performance: Use More, Smaller Basic Units

"50K" Simulation, Scenario V 3.0

Early Grid Application

Demonstrable Scalability

Run Size (Nodes)	81	161	238
Number of Router Triads	3	6	9
Number of SAFSim Nodes	60	120	180
Number of Simulated Vehicles	4,327	8,529	12,915
Primary Busy Fraction	0.188 ± 0.038	0.189±0.018	0.207±0.035
Pop-Up Busy Fraction	0.025±0.015	0.025 ± 0.007	0.027±0.014
Pull-Down Busy Fraction	0.030 ± 0.022	0.026 ± 0.018	0.031±0.016
Primary Receive Time [msec]	0.560±0.115	0.537±0.057	0.587 ± 0.089
SAFSim Comms. Fraction	0.023±0.021	0.024±0.011	0.030±0.037
SAFSim Receive Time [msec]	1.191±2.200	0.978±0.912	1.526±2.652

Table 1: Router and SAFSim performance measures for a sequence of runs of the Maui High Performance Computing Center (§) IBM SP2.

What happened?

- STOW 97 "diminished down expectations"
 - STOW 97 ran around 5,000 entities
 - SFExpress achieved 100,000 entities
- modSAF development continued independently
- We never changed the mainstream code
- ◆ SFExpress had little impact ⊗

Is A Pattern Emerging?

- Parallelization efforts succeeded, yet had little impact
- Critical flaw was they were not the mainstream code, and could never catch up
- Lesson Learned!
 - Don't just do research projects and stunts
 - Work real codes and real problems
 - The Apollo project was a research project!!!

My Programming Odyssey: My Youth

- ◆ SAIL Undergraduate course work
- X86 assembly "firmware"
- → Hexadecimal career as EE peaked ©
- Pascal Masters course work
- Ada First "research project" language
- f77 language for PISCES
- f77 + Intel message passing (isend/irecv)

My Programming Odyssey: Post Doctoral Work

- ◆ C good for bit bashing
- CAL maximum performance
- CMF TMC's variant of HPF
- ◆ AC Bill Carlson's "vector C" for CM-5
- ◆ MPL MasPar
- AC Bill Carlson's early version of UPC
- ◆ MS Office ⊗

My Programming Odyssey: Today

- f77 and MPI
- Why?
 - f77 compilers generate fast code
 - MPI is the lowest common denominator
- ◆ Tomorrow?
 - Maybe Java + f77 kernels + MPI
 - Right programming model for a Beowulf

What have I learned About Programming Models?

- Message passing tedious and error prone
- Shared memory is better
 - Simpler programming abstraction
 - Lower latency when supported in H/W
 - One can evolve code like on vector machines
- Both usually lead to the same end-point
 - Exploit locality
 - Minimize inter-processor interaction

Nevertheless ...

- Code usually outlives any one machine
- Machine models keep changing
 - PVP
 - SIMD
 - NUMA
- Therefore, use lowest common denominator
 - F77 and/or C
 - MPI
 - Maybe a C++ or Java shell
 - Perhaps even Python?

What have I learned About Productivity?

- Productivity is a function of many things
 - Familiarity
 - Abstraction (AC and MPL were not virtual)
 - Correlation between programming model and H/W
- Intellectual Risks Compound
 - New mathematical algorithms
 - Parallel Processing
 - Distribution of work and data
 - Coordination
 - Better addressed one at a time

Performance Frustration: Sparse Matrix Factorization

Sparse Matrix Factorization Storage Traces

Hood Performance on O2K

Bottom line on tools?

- printf and etime
 - Lowest common denominator
- Of course I've seen better
 - Totalview
 - FlashPoint
- I'm frustrated!!!

Vision Thing

Start with a motivating problem!

ASCI Got This Right

Up and to right chart

To Serve Man

- Are they missionaries here to save us?
- ♦ Is it a cookbook?
- The spooks can't articulate their problems

"Malaise"

- Parallel processing is hard, if not impossible
- Many people have given up
- Others have no vision or energy

Be "Like Rick"

- You need to be an eternal optimist
- You need to have big dreams
- You need to stick with projects to the end and deliver (E.g. MPI)

Mechanical Dynamics Example

John Hallquist's Vision for How to Exploit Additional Cycles

- First order-of-magnitude of effective performance
 - Realistic models
- Next two orders-of-magnitude
 - Automatic design space exploration
- Next two ...
 - Non-ideal material properties
- Next one ...
 - Over lunch instead of over night
- Next one ...
 - Over a smoke ☺

How's Their Performance?

Due diligence from LLNL

62 Materials

Coarse Model 259,990 nodes 208,293 elements **Dense Model** 1,166,444 nodes 1,003,922 elements

Fixed Speedup for Small Model

Fixed Speedup for Big Model

Data from the 2000 LS-DYNA Conference 80 msec NCAC Neon Model LS-DYNA Performance

Normalized Performance

- Note, y-axis not labeled in Flop/s!!!
- ◆ Detour to IBM slide ...

Why so slow?

- Irregular grids
 - NP-complete partitioning problem
- Adaptive grids
 - Keep revisiting it
- Contact search
 - Giant parallel sort
- Localized physics
 - Load Imbalance
- Implicit time steps?
 - God help you ⊗

Future Performance?

- We're struggling with today's systems
 - Electrical Engineers gave up
 - Mechanical Engineers OK on small systems
 - Material Scientists OK today, but ...
- How effective can Blue Gene/L be?
- What would Gene Amdahl say?

How About the ES40?

- ◆ The Japanese kicked our collective butts ☺
- It appears they worked backwards from an attractive application
 - think Kyoto
- They did not say "woe is me, I can only have a big PC cluster"
- They maintained focus and \$\$\$
 - Not just a criticism of politicians
 - Research community runs from one fad to the next

What I Told You About Parallel Applications

- Work outside the mainstream often stays there
 - Parallel PISCES
 - SFExpress
- Need to solve real problems
 - Its not enough to build big machines
 - Its not enough to publish research papers

What I Told You About Programming

- People settle on the lowest common denominator
- Productivity is a function of familiarity
- Shared memory better
 - Allows users to evolve

What I Told You About Vision

- Think Big!
 - ASCI got this right
- Think in terms of real problems
 - Don't need whimsical applications to have a vision
 - Be honest about your performance
- Evolve
 - Allow people to get from here to there
 - Create an ES40 for US science ©

Backups

What Tom Blank Told Me

- ◆ Tell 'em what you're going to tell 'em
- ◆ Then tell 'em
- Then tell 'em what you told 'em

Relative Processor Performance

	Total Time	Major Newton Routines	
Processor	(sec.)	Assemble	Factor
Intel 310/142	1165	36%	49%
SUN 3/50	554	42%	49%
Convex C-1	103	46%	25%

Time (sec.) and Percentage of Total Time That PISCES Spent Executing Key Routines in the Sample Diode Problem.